
Á TA: (cicero at vplab.snu.ac.kr)

Á Grading

Á Class presentation & attendance: 30 %

Á Exam: 30%

Á Term Project: 40%

Â All information on the course will be
available
Â http://vplab.snu.ac.kr/lectures/09 -2/graphics

4541.762
()

Syllabus
1. Introduction to GPU

2. Rendering Pipeline

3. GPU Architecture Overview [GPU Architecture Overview (SIGGRAPH 2007).pdf, CUDA-book.pdf]
Direct3D 9 and Shader Model 3 Part I [Direct3D 9 tutorial, DX9 Lecture Node 1, 2]

4. Direct3D 9 and Shader Model 3 Part II [Direct3D 9 tutorial, DX9 Lecture Node 3~5]

5. Direct3D 10 and Shader Model 4 [Introduction to Direct3D 10 (SIGGRAPH 07 Course).pdf]

6. Introduction to Parallel Programming [Introduction to Parallel Programming Model (SIGGRAPH 2009).pdf]

7. High Level Language for GPU [High Level Languages for GPU.pdf]

8. Introduction to CUDA

1. Introduction to CUDA [Introduction to CUDA (NVIDIA).pdf]

2. CUDA Basics [CUDA Basics (NVIDIA).pdf]

9. Optimizing CUDA [Optimizing CUDA (NVIDIA).pdf]

10. App : Volume Rendering [VR Lecture notes]

11. App : Deformable Body Physics Simulation [Deformable Body Physics Simulation.pdf]

12. App : Marching Cubes [High-speed Marching Cubes using Histogram Pyramids.pdf]

13. App : Image Convolution [Image Convolution with CUDA (NVIDIA).pdf]

14. App : Edge Detection [Canny Edge Detection on NVIDIA CUDA (IEEE CVPRW 08).pdf]

15. App : Wavelet Transform [Discrete Wavelet Transform on GPU.pdf]

16. App : Image Denoising [Image Denoising (NVIDIA).pdf]

17. App : Image Registration [Accelerated Image Registration with CUDA.pdf]

18. App : Graph Cut [CudaCuts Fast Graph Cuts on the GPU (IEEE CVPRW 08).pdf]

Graphics Hardware

Graphics Processing Unit (GPU) is aé

Â Subsidiary hardware
Â Independent to the main processing unit, i.e. CPU

Â With massively multi-threaded many-core
Â Hundreds of cores, thousands of concurrent threads

Â Dedicated to 2D and 3D graphics
Â Special purpose - low functionality, high performance

Â H/W accelerated graphics operation

Graphics Hardware

Â CPUs are optimized for high performance on
sequential code

Â Branch prediction, out-of-order execution

Â GPUs are optimized for highly data-parallel nature of
graphics computation

Â Plentiful SIMD instructions

Â Extremely fast for SIMD operations

Â Model for threading

Â CPU - Coarse, heavyweight

Â GPU - Fine, extremely lightweight

GPU in (relatively) Modern PCs

Â AGP bus
Â 1x/2x/4x/8x
Â 2133MB/s bandwidth with AGP 8x
Â Asymmetric bandwidth

Â CPU Ą GPU download : almost 2GB/s on AGP 8x
Â GPU Ą CPU readback : <1/10 of download

Â PCI Express
Â 1x ~ 32x : just # of lanes
Â Symmetric bandwidth for download/ readback
Â 1.1 : 0.25GB/s/lane for one direction (4GB/s for 16x)
Â 2.0 : 0.5GB/s/lane
Â 3.0 (in progress) : 0.8GB/s/lane (?)

AGP/PCI Express Bus

Â GPUs are getting faster
Â CPUs: annual growth ;1.5ě
Ą decade growth : 60ě

Â GPUs: annual growth > 2.0ě
Ą decade growth > 1000

Computational Power of GPU

Â GPUs are fasté

Â Intel Core i7 965 Extreme Edition
: 70 GFlops, 24GB/sec peak memory bandwidth

Â GeForce GTX 285
: 1062 GFlops, 160 GB/sec peak memory bandwidth

Â A massively parallel architecture

Â Modern GPUs are deeply programmable

Â Programmable pixel, vertex, and geometry engines

Â Solid high-level language support

Â Modern GPUs support ñrealò precision

Â 32-bit floating point throughout the pipeline

Â Integer type and operations

Â Some expensive hardwares support double precision real
number manipulation

Â Incredibly fast speed of on-board memory and bus

Why GPUs is Trendy

Â Dedicated instructions for graphical tasks

Â Vector operations on 4 floats that are as fast as scalar
operations (intrinsic parallel processing)

Â Useful for graphics ðvectors, matrices, textures

Â Extremely fast filtering

Â Linear and some anisotropic interpolation is implemented in
wired logic

Â Flexibility and programmability is getting better rapidly

Â GPGPU : General-Purpose computation on GPU

Why GPU is Trendy

ÁRestriction of on-board memory size

Áupto 4GB, usually<1GB

ÁLimited bandwidth for data transfer with ñout-of-boardò
area, bound to I/O bus interface (e.g. AGP, PCIeé)

ÁCPU and main memory

ÁOther GPUs on same system

Á Insufficient support for flexible memory manipulation
Á Memory fragmentation is one major problem on applications

with frequent memory allocation/ deallocation
Á Latest hardwares supports virtual memory and dynamic

memory management, but still crude and implicit

ÁProgrammability still restricted in a number of ways

Á limited branch divergence, such as loops or conditional clauses

Limitations: H/W restrictions

Limitations: Difficult to use

Â GPUs designed for & driven by video games

Â Programming model unusual

Â Programming idioms tied to computer graphics

Â Programming environment tightly constrained

Â Underlying architectures are:

Â Inherently data parallel

Â Rapidly evolving (even in basic feature set!)

Â Largely secret

Â Canôt simply ñportò CPU code!

Â Good news: itôs getting better (GPGPU)

Á H/W side: Vendor Wars
ÁSemantically same function is implemented by different methods in

internal architectures

ÁVendors are reluctant to open internal architectures ïñBlackboxò
Á Even exact cache size of consumer GPUs are not announced in public!

Á API side: Too obsolete, Too fluctuating, or Too complex
ÁSGI OpenGL : Standardization process is too slow

ÁMost of new technologies are adopted as vendor-specific and non-standard
extensions

ÁMicrosoft Direct3D : Fast adaptation to new technologies
Á APIs are totally revised on each version upgrades

ÁGPGPU languages
ÁGeneral developers are confused by the concept ñparallelismò itself

Á Parallel developers are confused by unfamilliar implementation and limitations

ÁGPU developers are confused by new concepts for parallelism

Limitations: òMatter of Choiceò

Summary

Â GPU is a massively parallel architecture

Â Many problems map well to GPU-style computing

Â GPUs have large amount of arithmetic capability

Â Increasing amount of programmability in the pipeline

Â Challenge:

Â How do we make the best use of GPU hardware?

Â New features

Â Techniques, programming models, languages, evaluation tools é

Â Think in parallel

Brief History of Consumer GPU

Â Co-unit for Lighting and Rasterization

Â T&L acceleration

Â Shader Assembly

Â Cg/HLSL

Â Dynamic branching

Â Unified Shader

Â GPU Wrapper APIs for GP programming

Â NVIDIA CUDA

Fixed Pipeline Era

Programmable Shader Era

GPGPU era

Traditional Graphics Pipeline

PixelsPrimitives FragmentsVertices

Primitive

Assembly
Rasterization Shading

Shaded
Fragments

Blending

Transformation
Depth test

Lighting and Rasterization

ÁMost time consuming part on early CG era
Á Few polygons (<1k)

ÁMany rasterized pixels (100k ~ 1M)

Á Lighting function is heavy computational
ÁMany float vector operations

Á Interpolation and texture mapping

Á API for consumer 3D graphics
ÁDirectX 3 (1996)

Á H/Ws to accelerate ópixelô processing are introduced
Á 3Dfx Voodoo (1996) - No VGA

Á 3DLabs Permedia (1996) - H/W support for OpenGL API

ÁNVIDIA Riva (1997)

ÁóVertexô processed on CPU

Final Fantasy VII (1997)

Transformation & Lighting

Â Hardware accelerated vertex processing

Â Vertex data stored in graphics memory

Â Microsoft Direct3D 7 (1999)

Â NVIDIA GeForce256 (1999)

Final Fantasy VII (1997)

Quake III Arena (1999)

Programmable Shader

Â Fixed pipeline acceleration H/W is inflxible

Â Fixed vertex transformation with WVP matrix

Â Fixed shading algorithms, filtering methods, é

Â Demand for high quality rendering explodes!

Â Complicated texture mapping and filtering methods

Â Various light sources and finer shading method

Â Special effects such as reflection, lens flareé

Â Influenced by the success of
Pixar's RenderMan technology

Toy Story (1995)

Programmable Shader

Â Shaders : more flexibility

Â Vertex shaders allow the manipulation of vertex data

Â Pixel shaders allow the manipulation of pixel data

Vertex Shader Clipping Rasterizer

BlendingPixel Shader Frame Buffer

Triangles

Display

Programmable Graphics Pipeline
(early age)

Â Application

Â Scene Management

Â Vertices / Tessellation

Â Vertex operations

Á Transform & Lighting (T&L)

Á Culling, Clipping

Â Pixel operations

Á Triangle Setup and rasterization

Á Shading, multi texturing

Á Fog, Alpha Test, Depth buffering, Antialising

Á Display

Vertex shader

Pixel shader

A vertex shader operates on one vertex at a time.
A vertex shader cannot add vertices
A pixel shader operates on one pixel at a time
A pixel shader cannot add pixels

Â The first programmable shader model on PC

Â Microsoft Direct3D 8.1 (2000)

Â NVIDIA GeForce 3 and ATI Radeon 8500 (2001)

Â Mnemonic language correspond with machine
language for programmable shader H/W

Shader Assembly

Vertex Shader 1.1 Pixel Shader 1.4

