
Chapter 6

Volume Ray Casting on CUDA

The performance of graphics processors (GPUs) is improving at a rapid rate,

almost doubling every year. Such an evolution has been made possible because

the GPU is specialized for highly parallel compute-intensive applications, primarily

graphics rendering, and thus designed such that more transistors are devoted to

computation rather than caching and branch prediction units. Due to compute-

intensive applications’ high arithmetic intensity (the ratio of arithmetic operations to

memory operations), the memory latency can be hidden with computations instead

of using caches on GPUs. In addition, since the same instructions are executed

on many data elements in parallel, sophisticated flow control units such as branch

prediction units in CPUs are not required on GPUs as much.

Although the performance of 3D graphics rendering achieved by dedicating

graphics hardware to it far exceeds the performance achievable from just using CPU,

graphics programmers had up to now to give up programmability in exchange for

speed. They were limited to using a fixed set of graphics operations. On the other

hand, instead of using GPUs, images for films and videos are rendered using an

off-line rendering system that uses general purpose CPUs to render a frame in hours

because the general purpose CPUs give graphics programmers a lot of flexibility to

95



create rich effects. The generality and flexibility of CPUs are what the GPU has

been missing until very recently.

In order to reduce the gap, graphics hardware designers have continuously

introduced more programmability through several generations of GPUs. Up until

2000, no programmability was supported in GPUs. However, in 2001, vertex-level

programmability started to appear, and in 2002, pixel-level programmability also

started being provided on GPUs such as NVIDIA’s GeForce FX family and ATI’s

Radeon 9700 series. This level of programmability allows programmers to have

considerably more configurability by making it possible to specify a sequence of

instructions for processing both vertex and fragment processors.

However, accessing the computational power of GPUs for non-graphics appli-

cations or global illumination rendering such as ray tracing often requires ingenious

efforts. One reason is that GPUs could only be programmed using a graphics API

such as OpenGL, which imposes a significant overhead to the non-graphics appli-

cations. Programmers had to express their algorithms in terms of the inadequate

APIs, which required sometimes heroic efforts to make an efficient use of the GPU.

Another reason is the limited writing capability of the GPU. The GPU program

could gather data element from any part of memory, but could not scatter data to

arbitrary locations, which removes lots of the programming flexibility available on

the CPU.

In order to overcome the above limitation, NVIDIA has developed a new hard-

ware and software architecture, called CUDA (Compute Unified Device Architec-

ture), for issuing and managing computations on the GPU as a data-parallel com-

96



puting device that does not require mapping instructions to a graphics API [NVI07].

CUDA provides the general memory access feature, and thus, the GPU program is

now allowed to read from and write to any location in memory on CUDA.

In order to harness the power of the CUDA architecture, we need new design

strategies and techniques that fully utilize the new features of the architecture.

CUDA is basically tailored for data-parallel computations and thus is not well suited

for other types of computations. Moreover, the current version of CUDA requires

programmers to understand the specific architecture details in order to achieve the

desired performance gains. Programs written without the careful attention to the

architecture details are very likely to perform poorly.

In this chapter, we explore the application of our streaming model, which was

introduced in the previous chapter for the Cell processor, for the CUDA architecture.

Since the model is designed for heterogeneous compute resource environment, it is

also well suited for the CPU and CUDA combined environment. Our basic strategy

in the streaming model is the same as in the case of Cell processor. We assign

the work list generation to the first stage (CPU) and actual rendering work to the

second stage (CUDA) with data movement streamlined through the two stages. The

key is that the we carefully match the performances of the two stages so that two

processes are completely overlapped and no stage has to wait for the input from the

other stage.

Our scheme features the following. First, we essentially remove the overhead

caused by traversing the hierarchical data structure by overlapping the empty space

skipping process with the actual rendering process. Second, our algorithms are

97



carefully tailored to take into account the CUDA architecture’s unique details such

as the concept of warp and local shared memory to achieve high performance. Last,

the ray casting performance is 1.5 times better than that of the Cell processor with

only a third lines of codes of the Cell processor and 15 times better than that of

Intel Xeon processor.

6.1 The CUDA Architecture Overview

The CUDA (Compute Unified Device Architecture) hardware model has a set

of SIMD multiprocessors as shown in Figure 6.1. Each multiprocessor has a small

local shared memory, constant cache, texture cache and a set of processors. At any

given clock, every processor in the multiprocessor executes the same instruction. For

example, NVIDIA Geforce 8800GTX architecture is comprised of 16 multiprocessors.

Each multiprocessor has 8 streaming processors for a total of 128 processors.

Figure 6.2 shows the CUDA programming model. CUDA allows programmers

to use C-language to program it instead of graphics APIs such as OpenGL and

Direct3D. In CUDA, the GPU is a compute device that can execute a very high

number of threads concurrently. The batch of threads is organized as a grid of

thread blocks as shown in the Figure 6.2. A thread block is a group of threads

that can synchronize and efficiently share data through the local shared memory.

One or more thread blocks are dispatched to each multiprocessor and executed

using time sharing. Blocks are further organized into a grid. However, threads in

different blocks can not communicate and synchronize with each other. In fact,

98



Figure 6.1: CUDA Hardware Architecture [NVI07].

synchronization mechanism is provided only to the threads in the same block, and

thus, the correctness of any other communication attempts is not guaranteed because

there is no mechanism that can determine the order of the threads executions in the

case. This block independence makes CUDA scalable architecture because we can

process more blocks in parallel as we add more processing units although it reduces

programming flexibility.

As the memory and register file in a multiprocessor are shared by one or more

blocks of a large number of threads, there is a limit in how many threads and blocks

can be launched, depending on how much resources each thread and block requires.

99



Figure 6.2: CUDA Programming Model [NVI07].

It is important to optimize the resource usage per thread so that more threads and

blocks can be launched because as more threads get available there is a better chance

that memory latency can be hidden.

It is also important to efficiently use memory hierarchy of CUDA to achieve

high performance. The shared memory in each multiprocessor provides more than

two orders of magnitude faster access to data than what the device memory does,

therefore it is important to utilize the shared memory. The best way is to pre-load

data that is frequently accessed in the program onto the shared memory before it is

used.

100



Another important aspect of the current version of CUDA is the concept of

warps. A warp is a SIMD group of threads, which constitute the unit of threads

that a thread scheduler for a multiprocessor periodically switches to maximize the

computational unit usage. If a warp of threads can not progress any more for

some reason, then the scheduler replaces the current one with another warp that

was waiting in the threads pool. A block of threads is typically comprised of a

few warps. If the threads in a warp execute different instructions or their memory

accesses cause bank conflicts, then the execution of the threads in the warp will be

serialized, which will cause significant performance degradation. Thus, it is very

important to take the concept of warp into consideration when programming for

CDUA so that we can fully take advantage of the simultaneous computations of the

multiprocessor.

6.2 CELL v.s. CUDA

Table 6.1 compares the two different architectures, Cell processor and CUDA,

with a traditional CPU architecture in several categories. The main feature of Cell

processor is that it provides more general parallel programming models than CUDA,

making it a better choice for more general applications. For example, CUDA can

not implement a streaming model on the chip, where a group of threads produce

data and another group of threads consume the data for a certain processing at one

kernel launch, while Cell can support that streaming programming model. However,

CUDA provides much easier parallel programing model than Cell. For example, our

101



ported code of the core volume rendering function for the Cell processor has more

than 3 times as many lines as that of CUDA.

Cell B.E. CUDA CPU

Programming model SPMD, MPMD SPMD SPSD

Simultaneous Threads tens Thousands 1

Programmability Difficult Medium Easy

Handling Memory La-

tency

Pre-fetching and

Double Buffering

Multithreading Cache

Feature Various Parallel

Programming

Model

Easier Parallel

Programming

General Pur-

pose

Limitation Explicit data

movement by

programmers

Limited Program-

ming Model

Low Perfor-

mance

Table 6.1: Comparison of three different architectures.

In the context of volume rendering, besides the programmability and perfor-

mance difference, another main difference of the two parallel architectures is that

Cell processor provides more scalable support to large volume rendering because it

uses main memory as a primary data storage. On the other hand, CUDA has to

move data from main memory to graphics device memory which is usually smaller

than main memory and because the data communication bandwidth is usually an

order of magnitude slower than graphics memory bandwidth, it loses significant

102



amount of performance once it begins communicating with main memory during

run time.

6.3 Primary Work Decomposition and Allocation

In this section, we describe our primary work decomposition and allocation

scheme for volume ray casting on CUDA.

x

y

Multiprocessor 0 Multiprocessor 15

CUDA

Figure 6.3: Work decomposition and assignment on CUDA. A tile consists of x by

y block of threads and is dispatched into one of the multiprocessors.

Our work decomposition scheme is based on fine-grain task parallelism that

achieves load balancing among the multiprocessors. In ray casting, the overall con-

currency is obvious since we can compute each pixel value on the screen indepen-

dently of all the other pixels. To take advantage of this fact, we divide the screen

103



into a grid of small tiles as we did in the case of Cell processor. A block of threads

equal to the number of pixels on each tile will be allocated for the tile and the block

of threads will be executed by a multiprocessor, independently of other blocks of

threads.

However, there are several significant details that are different than the case

of Cell processor. First, the maximum size of the tile is determined by how much

resource each thread requires. Since the register file and shared memory are shared

by one or more blocks of threads, we can only launch as many threads as the

resource allows. Second, the dimensions of the tile are carefully selected considering

the concept of warp. Since the threads in a warp should share the work list to

achieve high performance, we design the dimensions of the tile such that a warp of

threads occupy a rectangular region with as equal dimensions as possible. In our

implementation, we use a tile of 4x32 dimension with a 4x4 subtile sharing the work

list. Last, the assignment of each tile to a multiprocessor is done by the CUDA

scheduler while we had to assign the tasks to the cores of the Cell processor.

6.4 Implementation of the Streaming Model

In this section, we describe the implementation of our streaming model from

the previous chapter on CUDA architecture. As in the case of Cell processor, we

assign two optimization techniques, empty space skipping and early ray termination,

to an appropriate hardware, and streamline the data movement between the stages

in the model. Efficiently implementing these two acceleration techniques is very

104



important since it significantly affects the ray casting performance.

6.4.1 Stage 1: Work List Generation

A general purpose processor is clearly a better candidate for efficiently travers-

ing a hierarchical data structure. Furthermore, CUDA would have a substantial

overhead in handling empty space skipping due to the concept of warp, in which

a group threads, 32 in the current version of CUDA, have to execute the same

instruction at any given clock cycle for high performance.

The procedure for generating work lists is the same as in the case of Cell

processor. Given a ray, a CPU traverses the hierarchical data structure along the ray

direction and collects contributing ray segments traversing non-empty subvolumes.

Each ray segment is characterized by the ray offset from the viewpoint and the

length of the corresponding segment. The collected ray segments for all the pixels

of a tile are concatenated and transferred to CUDA.

We also employ the approximation technique used for Cell processor. However,

for CUDA, there is another reason for using this technique. Due to the concept of

warp, it is better for a group of threads to share the work lists than each thread

in the same warp to run independently. Therefore, we only generate the list of

contributing ray segments for every k × k-th pixel, rather than for every pixel. For

example, our tile (thread block) dimensions are 4 × 32 and we choose every 4 ×

4-th pixel for the work list generation. The region (16 threads) surrounded by the

4 chosen pixels is half warp size, and we estimate the contributing ray segments for

105



the region by taking the union of the ray segments lists at the surrounding 4 corners.

Then, CUDA uses the resulting list to render to all the pixels in the region of size

k× k. Note that the current version of CUDA has a shared memory organized into

16 banks and thus it is recommended that at least a half warp of threads executes

the same instruction.

k

k

A contributing ray segment in 
approximation

A contributing ray segment in 
original

A Tile

Figure 6.4: Approximation technique on CUDA.

The main difference of implementing the streaming model from the case of the

Cell processor is the method used to stream the data. While we have multiple chan-

nels from the first stage (a PPE) to the second stage (SPEs) on the Cell processor

because each SPE runs independently, we have only one channel to CUDA because

CUDA does not allow the independent access to each multiprocessor. Therefore,

we need a large streaming unit to move to all the multiprocessors at one kernel

launch as illustrated in Figure 6.5. In our implementation, our streaming unit is

32 tiles (blocks), which will allocate 2 blocks of threads to each multiprocessor on

the Geforce 8800GTX with 16 multiprocessors. After launching 32 tiles of work on

CUDA, the CPU starts getting the contributing lists for the next 32 tiles and wait

106



until the previous launch is completed.

CPU

Contributing 
Ray Segment List

(Offset, Length)…

A set of tiles

Volumetric Data

CUDA

Rendered image

Figure 6.5: The streaming model for CUDA. Note that the streaming unit is a set

of tiless compared to one tile in the case of Cell processor.

6.4.2 Stage 2: Rendering

CUDA is ideal for the actual rendering work since it was designed for compute-

intensive parallel workloads. Thus, we naturally implement rendering and early ray

termination on CUDA. Before the rendering starts, we pre-load all the work lists

for the current tile into the shared memory since the shared memory provides data

with the latency of L-1 cache (1∼2 cycles). The other procedures are the same as

before. We perform reconstruction, shading, classification, and finally compositing

on the sample points along all the contributing ray segments. The final image is

transferred back into main memory after a final kernel launch is finished.

107



Load Balance (CPU v.s. CUDA)

0

10

20

30

40

50

60

70

80

foot aneurism engine fuel

m
se

c CPU

CUDA

Figure 6.6: Load balance between CPU and CUDA.

6.5 Experimental Results

To evaluate the performance of our streaming model based implementation,

we used the same four volumetric datasets and rendering mode used in the case of

Cell processor. Please refer to Table 5.1 for the characteristics of the datasets. We

used Geforce 8800GTX with a ver 1.0 CUDA drivers with Intel core 2 duo processor

throughout the evaluation.

We first demonstrate that our streaming model implemented on the CUDA

environment removes the overhead of traversing the octree structure for empty space

skipping by fully overlapping it with the actual rendering process. Figure 6.6 shows

the processing time for CPU and CUDA on the four datasets. Processing time

on the CPU is the time it takes to traverse the octree data structure to generate

the contributing ray segments. The CUDA time is the time it takes to perform the

actual rendering. This figure shows that the empty space skipping time is completely

108



Scalability with Volume Size

35.7

22.7

13.7

7.2

71.4
55.6

43.5
30.3

1.0

10.0

100.0

64 128 256 512

fp
s

foot

aneurism

engine

fuel

Figure 6.7: Performance with respect to the volume size.

Scalability with Screen Size

35.7

13.7

4.0

1.0

125.0

43.5

11.8

3.2

1.0

10.0

100.0

1000.0

128 256 512 1024

fp
s

foot

aneurism

engine

fuel

Figure 6.8: Performance with respect to the screen size.

109



Intel Xeon 3GHz v.s. Cell 3.2GHz v.s. CUDA

0.7 0.9 1.2 2.8

8.8 10
13

26

13
16 17

43

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

foot aneurism engine fuel

fp
s

Intel Xeon 3GHz (2 threads)
Cell (2 PPE+8 SPE threads)
CUDA (2 CPU + CUDA threads)

Figure 6.9: Performance comparison (CPU v.s. Cell v.s. CUDA).

hidden.

Figure 6.7 and 6.8 show that the performance of our implementation with

respect to input volumetric size and output screen size.

We compare the rendering performance on CUDA with the Cell B.E. 3.2GHz

and also Intel Xeon dual processor 3GHz with SSE2. Figure 6.9 shows that the

performance on CUDA consistently achieves 15 times better performance that that

of Intel and 1.5 times better than that of Cell processor. Also, it is very likely

that it will produce even better performance once its 3-D texture unit is exposed

in the later version of CUDA because we can utilize the texture cache unit in each

multiprocessor.

This results show that the new multi-core/many-core architectures can handle

110



compute and communication intensive applications such as volume ray casting in

much more efficient way since in particular, the Xeon processor and the Cell proces-

sor that we have used for the experiments do not have much difference in the number

of transistors (286 million and 234 million, respectively) and operate at about the

same frequency (3GHz and 3.2GHz, respectively).

6.6 Conclusions

In this chapter, we explored the application of our streaming model, which was

introduced in the previous chapter for Cell processor, for the CUDA architecture.

Our scheme fully utilizes the heterogeneous compute resource environment by using

both task parallelism (simultaneous processing of the optimization techniques on

different types of cores) and data parallelism (rendering by thousands of threads).

CUDA provides about 1.5 times better performance than Cell processor while

the CUDA program has only a third of parallel code lines of that of Cell processor

in our implementation. However, aside from other factors such as the number of

transistors and price, CUDA has a scalability problem with data set size because it

can only efficiently render a data set which can fit in graphics memory, while the

Cell processor can handle as large data as main memory allows.

The improvements in GPU performance and flexibility are likely to continue in

the future and will allow programmers to write increasingly diverse and sophisticated

programs that take advantage of the capabilities of the GPUs. There are emerging

efforts that combine CPU and GPU into a single chip. However, we will need

111



efficient algorithmic strategies to make use of the available heterogeneous compute

resources.

112


